Mister Exam

Other calculators:


x*cos(x/2)

Limit of the function x*cos(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /x\\
 lim |x*cos|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \cos{\left(\frac{x}{2} \right)}\right)$$
Limit(x*cos(x/2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /     /x\\
 lim |x*cos|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \cos{\left(\frac{x}{2} \right)}\right)$$
0
$$0$$
= -4.56769393695212e-32
     /     /x\\
 lim |x*cos|-||
x->0-\     \2//
$$\lim_{x \to 0^-}\left(x \cos{\left(\frac{x}{2} \right)}\right)$$
0
$$0$$
= 4.56769393695212e-32
= 4.56769393695212e-32
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \cos{\left(\frac{x}{2} \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \cos{\left(\frac{x}{2} \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \cos{\left(\frac{1}{2} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \cos{\left(\frac{1}{2} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
-4.56769393695212e-32
-4.56769393695212e-32
The graph
Limit of the function x*cos(x/2)