$$\lim_{x \to 0^-}\left(x \cos{\left(\frac{x}{2} \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x \cos{\left(\frac{x}{2} \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 1^-}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \cos{\left(\frac{1}{2} \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \cos{\left(\frac{1}{2} \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x \cos{\left(\frac{x}{2} \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo