Mister Exam

Other calculators:


x-1/x

Limit of the function x-1/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    1\
 lim |x - -|
x->0+\    x/
$$\lim_{x \to 0^+}\left(x - \frac{1}{x}\right)$$
Limit(x - 1/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
     /    1\
 lim |x - -|
x->0+\    x/
$$\lim_{x \to 0^+}\left(x - \frac{1}{x}\right)$$
-oo
$$-\infty$$
= -150.993377483444
     /    1\
 lim |x - -|
x->0-\    x/
$$\lim_{x \to 0^-}\left(x - \frac{1}{x}\right)$$
oo
$$\infty$$
= 150.993377483444
= 150.993377483444
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x - \frac{1}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x - \frac{1}{x}\right) = -\infty$$
$$\lim_{x \to \infty}\left(x - \frac{1}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x - \frac{1}{x}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x - \frac{1}{x}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x - \frac{1}{x}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
-150.993377483444
-150.993377483444
The graph
Limit of the function x-1/x