Mister Exam

Other calculators:


(x-atan(x))/x^2

Limit of the function (x-atan(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x - atan(x)\
 lim |-----------|
x->oo|      2    |
     \     x     /
limx(xatan(x)x2)\lim_{x \to \infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right)
Limit((x - atan(x))/x^2, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limx(xatan(x))=\lim_{x \to \infty}\left(x - \operatorname{atan}{\left(x \right)}\right) = \infty
and limit for the denominator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(xatan(x)x2)\lim_{x \to \infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right)
=
limx(ddx(xatan(x))ddxx2)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x - \operatorname{atan}{\left(x \right)}\right)}{\frac{d}{d x} x^{2}}\right)
=
limx(11x2+12x)\lim_{x \to \infty}\left(\frac{1 - \frac{1}{x^{2} + 1}}{2 x}\right)
=
limx(ddx(11x2+1)ddx2x)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(1 - \frac{1}{x^{2} + 1}\right)}{\frac{d}{d x} 2 x}\right)
=
limx(x(x2+1)2)\lim_{x \to \infty}\left(\frac{x}{\left(x^{2} + 1\right)^{2}}\right)
=
limx(x(x2+1)2)\lim_{x \to \infty}\left(\frac{x}{\left(x^{2} + 1\right)^{2}}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
02468-8-6-4-2-10100.5-0.5
Other limits x→0, -oo, +oo, 1
limx(xatan(x)x2)=0\lim_{x \to \infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 0
limx0(xatan(x)x2)=0\lim_{x \to 0^-}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 0
More at x→0 from the left
limx0+(xatan(x)x2)=0\lim_{x \to 0^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 0
More at x→0 from the right
limx1(xatan(x)x2)=1π4\lim_{x \to 1^-}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 1 - \frac{\pi}{4}
More at x→1 from the left
limx1+(xatan(x)x2)=1π4\lim_{x \to 1^+}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 1 - \frac{\pi}{4}
More at x→1 from the right
limx(xatan(x)x2)=0\lim_{x \to -\infty}\left(\frac{x - \operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 0
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function (x-atan(x))/x^2