Mister Exam

Other calculators:


(-56+h^2)/h

Limit of the function (-56+h^2)/h

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2\
     |-56 + h |
 lim |--------|
h->0+\   h    /
limh0+(h256h)\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right)
Limit((-56 + h^2)/h, h, 0)
Detail solution
Let's take the limit
limh0+(h256h)\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right)
transform
limh0+(h256h)\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right)
=
limh0+(h256h)\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right)
=
limh0+(h56h)=\lim_{h \to 0^+}\left(h - \frac{56}{h}\right) =
False

= -oo

The final answer:
limh0+(h256h)=\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right) = -\infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1000010000
Other limits h→0, -oo, +oo, 1
limh0(h256h)=\lim_{h \to 0^-}\left(\frac{h^{2} - 56}{h}\right) = -\infty
More at h→0 from the left
limh0+(h256h)=\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right) = -\infty
limh(h256h)=\lim_{h \to \infty}\left(\frac{h^{2} - 56}{h}\right) = \infty
More at h→oo
limh1(h256h)=55\lim_{h \to 1^-}\left(\frac{h^{2} - 56}{h}\right) = -55
More at h→1 from the left
limh1+(h256h)=55\lim_{h \to 1^+}\left(\frac{h^{2} - 56}{h}\right) = -55
More at h→1 from the right
limh(h256h)=\lim_{h \to -\infty}\left(\frac{h^{2} - 56}{h}\right) = -\infty
More at h→-oo
One‐sided limits [src]
     /       2\
     |-56 + h |
 lim |--------|
h->0+\   h    /
limh0+(h256h)\lim_{h \to 0^+}\left(\frac{h^{2} - 56}{h}\right)
-oo
-\infty
= -8455.99337748344
     /       2\
     |-56 + h |
 lim |--------|
h->0-\   h    /
limh0(h256h)\lim_{h \to 0^-}\left(\frac{h^{2} - 56}{h}\right)
oo
\infty
= 8455.99337748344
= 8455.99337748344
Rapid solution [src]
-oo
-\infty
Numerical answer [src]
-8455.99337748344
-8455.99337748344
The graph
Limit of the function (-56+h^2)/h