Mister Exam

Limit of the function x/(2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x  \
 lim |-----|
x->5+\2 + x/
limx5+(xx+2)\lim_{x \to 5^+}\left(\frac{x}{x + 2}\right)
Limit(x/(2 + x), x, 5)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
5/7
57\frac{5}{7}
Other limits x→0, -oo, +oo, 1
limx5(xx+2)=57\lim_{x \to 5^-}\left(\frac{x}{x + 2}\right) = \frac{5}{7}
More at x→5 from the left
limx5+(xx+2)=57\lim_{x \to 5^+}\left(\frac{x}{x + 2}\right) = \frac{5}{7}
limx(xx+2)=1\lim_{x \to \infty}\left(\frac{x}{x + 2}\right) = 1
More at x→oo
limx0(xx+2)=0\lim_{x \to 0^-}\left(\frac{x}{x + 2}\right) = 0
More at x→0 from the left
limx0+(xx+2)=0\lim_{x \to 0^+}\left(\frac{x}{x + 2}\right) = 0
More at x→0 from the right
limx1(xx+2)=13\lim_{x \to 1^-}\left(\frac{x}{x + 2}\right) = \frac{1}{3}
More at x→1 from the left
limx1+(xx+2)=13\lim_{x \to 1^+}\left(\frac{x}{x + 2}\right) = \frac{1}{3}
More at x→1 from the right
limx(xx+2)=1\lim_{x \to -\infty}\left(\frac{x}{x + 2}\right) = 1
More at x→-oo
One‐sided limits [src]
     /  x  \
 lim |-----|
x->5+\2 + x/
limx5+(xx+2)\lim_{x \to 5^+}\left(\frac{x}{x + 2}\right)
5/7
57\frac{5}{7}
= 0.714285714285714
     /  x  \
 lim |-----|
x->5-\2 + x/
limx5(xx+2)\lim_{x \to 5^-}\left(\frac{x}{x + 2}\right)
5/7
57\frac{5}{7}
= 0.714285714285714
= 0.714285714285714
Numerical answer [src]
0.714285714285714
0.714285714285714
The graph
Limit of the function x/(2+x)