Mister Exam

Other calculators:


x/(3-x^2)

Limit of the function x/(3-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
          /  x   \
   lim    |------|
      ___ |     2|
x->-\/ 3 +\3 - x /
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right)$$
Limit(x/(3 - x^2), x, -sqrt(3))
Detail solution
Let's take the limit
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right)$$
transform
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right)$$
=
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right)$$
=
$$\lim_{x \to - \sqrt{3}^+}\left(- \frac{x}{x^{2} - 3}\right) = $$
False

= -oo

The final answer:
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
          /  x   \
   lim    |------|
      ___ |     2|
x->-\/ 3 +\3 - x /
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right)$$
-oo
$$-\infty$$
= -75.3553859659747195948934569606616671399941301276418535221745538834465135920
          /  x   \
   lim    |------|
      ___ |     2|
x->-\/ 3 -\3 - x /
$$\lim_{x \to - \sqrt{3}^-}\left(\frac{x}{3 - x^{2}}\right)$$
oo
$$\infty$$
= 75.6440621556285785180890305930589004538213649891932274519538314706869414410
= 75.6440621556285785180890305930589004538213649891932274519538314706869414410
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to - \sqrt{3}^-}\left(\frac{x}{3 - x^{2}}\right) = -\infty$$
More at x→-sqrt(3) from the left
$$\lim_{x \to - \sqrt{3}^+}\left(\frac{x}{3 - x^{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{x}{3 - x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{3 - x^{2}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{3 - x^{2}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{3 - x^{2}}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{3 - x^{2}}\right) = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{3 - x^{2}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-75.3553859659747195948934569606616671399941301276418535221745538834465135920
-75.3553859659747195948934569606616671399941301276418535221745538834465135920
The graph
Limit of the function x/(3-x^2)