Mister Exam

Limit of the function x/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x\
 lim |-|
x->3+\3/
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right)$$
Limit(x/3, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /x\
 lim |-|
x->3+\3/
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right)$$
1
$$1$$
= 1.0
     /x\
 lim |-|
x->3-\3/
$$\lim_{x \to 3^-}\left(\frac{x}{3}\right)$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{x}{3}\right) = 1$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x}{3}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{3}\right) = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{3}\right) = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{3}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function x/3