Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of sin(2*x)/(5*x)
Limit of ((3+2*x)/(7+5*x))^(1+x)
Limit of ((-5+2*x)/(3+2*x))^(7*x)
Limit of (-6+x+x^2)/(3+x)
Derivative of
:
x/3
Graphing y =
:
x/3
Integral of d{x}
:
x/3
Identical expressions
x/ three
x divide by 3
x divide by three
Similar expressions
(2/3+e^(2*x)/3)^coth(x)
((-5+2*x)/(3+2*x))^(7*x)
((-1+4*x)/(3+4*x))^(2+3*x)
Limit of the function
/
x/3
Limit of the function x/3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x\ lim |-| x->3+\3/
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right)$$
Limit(x/3, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
1
$$1$$
Expand and simplify
One‐sided limits
[src]
/x\ lim |-| x->3+\3/
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right)$$
1
$$1$$
= 1.0
/x\ lim |-| x->3-\3/
$$\lim_{x \to 3^-}\left(\frac{x}{3}\right)$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{x}{3}\right) = 1$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{x}{3}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x}{3}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{3}\right) = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{3}\right) = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{3}\right) = -\infty$$
More at x→-oo
Numerical answer
[src]
1.0
1.0
The graph