Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-5+7*n)/(2+n)
Limit of (-64+4^x)/(-3+x)
Limit of (-7+3*x^2+5*x)/(1+x+3*x^2)
Limit of (-2+2*x^3+7*x)/(-4-x+3*x^3)
Graphing y =
:
x/10
Derivative of
:
x/10
Identical expressions
x/ ten
x divide by 10
x divide by ten
Similar expressions
(-7+4*x^2+5*x)/(10-x+2*x^2)
(8+x^2-6*x)/(10+x^2-7*x)
asin(-5+x)/(10+x^2-7*x)
log(1+5*x)/(10*x)
tan(5*x)/(10*x)
Limit of the function
/
x/10
Limit of the function x/10
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x \ lim |--| x->oo\10/
$$\lim_{x \to \infty}\left(\frac{x}{10}\right)$$
Limit(x/10, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x}{10}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{x}{10}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{10 \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{10 \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1}{10 u}\right)$$
=
$$\frac{1}{0 \cdot 10} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{x}{10}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{10}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x}{10}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{10}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{10}\right) = \frac{1}{10}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{10}\right) = \frac{1}{10}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{10}\right) = -\infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph