Mister Exam

Limit of the function x/10

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x \
 lim |--|
x->oo\10/
limx(x10)\lim_{x \to \infty}\left(\frac{x}{10}\right)
Limit(x/10, x, oo, dir='-')
Detail solution
Let's take the limit
limx(x10)\lim_{x \to \infty}\left(\frac{x}{10}\right)
Let's divide numerator and denominator by x:
limx(x10)\lim_{x \to \infty}\left(\frac{x}{10}\right) =
limx1101x\lim_{x \to \infty} \frac{1}{10 \frac{1}{x}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx1101x=limu0+(110u)\lim_{x \to \infty} \frac{1}{10 \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1}{10 u}\right)
=
1010=\frac{1}{0 \cdot 10} = \infty

The final answer:
limx(x10)=\lim_{x \to \infty}\left(\frac{x}{10}\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Other limits x→0, -oo, +oo, 1
limx(x10)=\lim_{x \to \infty}\left(\frac{x}{10}\right) = \infty
limx0(x10)=0\lim_{x \to 0^-}\left(\frac{x}{10}\right) = 0
More at x→0 from the left
limx0+(x10)=0\lim_{x \to 0^+}\left(\frac{x}{10}\right) = 0
More at x→0 from the right
limx1(x10)=110\lim_{x \to 1^-}\left(\frac{x}{10}\right) = \frac{1}{10}
More at x→1 from the left
limx1+(x10)=110\lim_{x \to 1^+}\left(\frac{x}{10}\right) = \frac{1}{10}
More at x→1 from the right
limx(x10)=\lim_{x \to -\infty}\left(\frac{x}{10}\right) = -\infty
More at x→-oo
Rapid solution [src]
oo
\infty
The graph
Limit of the function x/10