Mister Exam

Other calculators:


sin(x)/(10*x)

Limit of the function sin(x)/(10*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(x)\
 lim |------|
x->0+\ 10*x /
limx0+(sin(x)10x)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
Limit(sin(x)/((10*x)), x, 0)
Detail solution
Let's take the limit
limx0+(sin(x)10x)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
limx0+(sin(x)10x)=limu0+(sin(u)10u)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{10 u}\right)
=
limu0+(sin(u)u)10\frac{\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{10}
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(sin(x)10x)=110\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \frac{1}{10}
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+(sin(x)10)=0\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10}\right) = 0
and limit for the denominator is
limx0+x=0\lim_{x \to 0^+} x = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(x)10x)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
=
Let's transform the function under the limit a few
limx0+(sin(x)10x)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
=
limx0+(ddxsin(x)10ddxx)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{\sin{\left(x \right)}}{10}}{\frac{d}{d x} x}\right)
=
limx0+(cos(x)10)\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{10}\right)
=
limx0+110\lim_{x \to 0^+} \frac{1}{10}
=
limx0+110\lim_{x \to 0^+} \frac{1}{10}
=
110\frac{1}{10}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10100.2-0.1
Rapid solution [src]
1/10
110\frac{1}{10}
Other limits x→0, -oo, +oo, 1
limx0(sin(x)10x)=110\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \frac{1}{10}
More at x→0 from the left
limx0+(sin(x)10x)=110\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \frac{1}{10}
limx(sin(x)10x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = 0
More at x→oo
limx1(sin(x)10x)=sin(1)10\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \frac{\sin{\left(1 \right)}}{10}
More at x→1 from the left
limx1+(sin(x)10x)=sin(1)10\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = \frac{\sin{\left(1 \right)}}{10}
More at x→1 from the right
limx(sin(x)10x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)}}{10 x}\right) = 0
More at x→-oo
One‐sided limits [src]
     /sin(x)\
 lim |------|
x->0+\ 10*x /
limx0+(sin(x)10x)\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
1/10
110\frac{1}{10}
= 0.1
     /sin(x)\
 lim |------|
x->0-\ 10*x /
limx0(sin(x)10x)\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{10 x}\right)
1/10
110\frac{1}{10}
= 0.1
= 0.1
Numerical answer [src]
0.1
0.1
The graph
Limit of the function sin(x)/(10*x)