Mister Exam

Limit of the function x/7

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /x\
 lim  |-|
x->-3+\7/
$$\lim_{x \to -3^+}\left(\frac{x}{7}\right)$$
Limit(x/7, x, -3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-3/7
$$- \frac{3}{7}$$
One‐sided limits [src]
      /x\
 lim  |-|
x->-3+\7/
$$\lim_{x \to -3^+}\left(\frac{x}{7}\right)$$
-3/7
$$- \frac{3}{7}$$
= -0.428571428571429
      /x\
 lim  |-|
x->-3-\7/
$$\lim_{x \to -3^-}\left(\frac{x}{7}\right)$$
-3/7
$$- \frac{3}{7}$$
= -0.428571428571429
= -0.428571428571429
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -3^-}\left(\frac{x}{7}\right) = - \frac{3}{7}$$
More at x→-3 from the left
$$\lim_{x \to -3^+}\left(\frac{x}{7}\right) = - \frac{3}{7}$$
$$\lim_{x \to \infty}\left(\frac{x}{7}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{7}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{7}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{7}\right) = \frac{1}{7}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{7}\right) = \frac{1}{7}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{7}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
-0.428571428571429
-0.428571428571429
The graph
Limit of the function x/7