Let's take the limit
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
transform
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{x}{x - 1}\right) = $$
$$\left(-1\right) 1 \cdot \frac{1}{-1 + 1} = $$
= -oo
The final answer:
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right) = -\infty$$