Mister Exam

Limit of the function x/(1-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x  \
 lim |-----|
x->1+\1 - x/
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
Limit(x/(1 - x), x, 1)
Detail solution
Let's take the limit
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
transform
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{x}{x - 1}\right) = $$
$$\left(-1\right) 1 \cdot \frac{1}{-1 + 1} = $$
= -oo

The final answer:
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{x}{- x + 1}\right) = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{x}{- x + 1}\right) = -1$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{- x + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{- x + 1}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{- x + 1}\right) = -1$$
More at x→-oo
One‐sided limits [src]
     /  x  \
 lim |-----|
x->1+\1 - x/
$$\lim_{x \to 1^+}\left(\frac{x}{- x + 1}\right)$$
-oo
$$-\infty$$
= -152.0
     /  x  \
 lim |-----|
x->1-\1 - x/
$$\lim_{x \to 1^-}\left(\frac{x}{- x + 1}\right)$$
oo
$$\infty$$
= 150.0
= 150.0
Numerical answer [src]
-152.0
-152.0
The graph
Limit of the function x/(1-x)