Mister Exam

Limit of the function x/(1-cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    x     \
 lim |----------|
x->0+\1 - cos(x)/
$$\lim_{x \to 0^+}\left(\frac{x}{1 - \cos{\left(x \right)}}\right)$$
Limit(x/(1 - cos(x)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} x = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(1 - \cos{\left(x \right)}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{x}{1 - \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \left(1 - \cos{\left(x \right)}\right)}\right)$$
=
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
=
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = - \frac{1}{-1 + \cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = - \frac{1}{-1 + \cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{1 - \cos{\left(x \right)}}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /    x     \
 lim |----------|
x->0+\1 - cos(x)/
$$\lim_{x \to 0^+}\left(\frac{x}{1 - \cos{\left(x \right)}}\right)$$
oo
$$\infty$$
= 302.00110375518
     /    x     \
 lim |----------|
x->0-\1 - cos(x)/
$$\lim_{x \to 0^-}\left(\frac{x}{1 - \cos{\left(x \right)}}\right)$$
-oo
$$-\infty$$
= -302.00110375518
= -302.00110375518
Numerical answer [src]
302.00110375518
302.00110375518
The graph
Limit of the function x/(1-cos(x))