Mister Exam

Other calculators:


x/(9-x^2)

Limit of the function x/(9-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /  x   \
 lim  |------|
x->-3+|     2|
      \9 - x /
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right)$$
Limit(x/(9 - x^2), x, -3)
Detail solution
Let's take the limit
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right)$$
transform
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right)$$
=
$$\lim_{x \to -3^+}\left(\frac{x}{\left(-1\right) \left(x - 3\right) \left(x + 3\right)}\right)$$
=
$$\lim_{x \to -3^+}\left(- \frac{x}{x^{2} - 9}\right) = $$
False

= -oo

The final answer:
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
      /  x   \
 lim  |------|
x->-3+|     2|
      \9 - x /
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right)$$
-oo
$$-\infty$$
= -75.4165745856354
      /  x   \
 lim  |------|
x->-3-|     2|
      \9 - x /
$$\lim_{x \to -3^-}\left(\frac{x}{9 - x^{2}}\right)$$
oo
$$\infty$$
= 75.5832414553473
= 75.5832414553473
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -3^-}\left(\frac{x}{9 - x^{2}}\right) = -\infty$$
More at x→-3 from the left
$$\lim_{x \to -3^+}\left(\frac{x}{9 - x^{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{x}{9 - x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{9 - x^{2}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{9 - x^{2}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{9 - x^{2}}\right) = \frac{1}{8}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{9 - x^{2}}\right) = \frac{1}{8}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{9 - x^{2}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-75.4165745856354
-75.4165745856354
The graph
Limit of the function x/(9-x^2)