Mister Exam

Other calculators


x/(9-x^2)

Integral of x/(9-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    x      
 |  ------ dx
 |       2   
 |  9 - x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x}{9 - x^{2}}\, dx$$
Integral(x/(9 - x^2), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |   x      
 | ------ dx
 |      2   
 | 9 - x    
 |          
/           
Rewrite the integrand
                -2*x      
         - -------------- 
              2           
  x        - x  + 0*x + 9 
------ = -----------------
     2           2        
9 - x                     
or
  /           
 |            
 |   x        
 | ------ dx  
 |      2    =
 | 9 - x      
 |            
/             
  
   /                  
  |                   
  |      -2*x         
- | -------------- dx 
  |    2              
  | - x  + 0*x + 9    
  |                   
 /                    
----------------------
          2           
In the integral
   /                  
  |                   
  |      -2*x         
- | -------------- dx 
  |    2              
  | - x  + 0*x + 9    
  |                   
 /                    
----------------------
          2           
do replacement
      2
u = -x 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 9 + u                   
  |                         
 /              -log(9 + u) 
------------- = ------------
      2              2      
do backward replacement
   /                                   
  |                                    
  |      -2*x                          
- | -------------- dx                  
  |    2                               
  | - x  + 0*x + 9                     
  |                          /      2\ 
 /                       -log\-9 + x / 
---------------------- = --------------
          2                    2       
Solution is:
       /      2\
    log\-9 + x /
C - ------------
         2      
The answer (Indefinite) [src]
  /                           
 |                    /     2\
 |   x             log\9 - x /
 | ------ dx = C - -----------
 |      2               2     
 | 9 - x                      
 |                            
/                             
$$\int \frac{x}{9 - x^{2}}\, dx = C - \frac{\log{\left(9 - x^{2} \right)}}{2}$$
The graph
The answer [src]
log(9)   log(8)
------ - ------
  2        2   
$$- \frac{\log{\left(8 \right)}}{2} + \frac{\log{\left(9 \right)}}{2}$$
=
=
log(9)   log(8)
------ - ------
  2        2   
$$- \frac{\log{\left(8 \right)}}{2} + \frac{\log{\left(9 \right)}}{2}$$
log(9)/2 - log(8)/2
Numerical answer [src]
0.0588915178281917
0.0588915178281917
The graph
Integral of x/(9-x^2) dx

    Use the examples entering the upper and lower limits of integration.