Mister Exam

Other calculators:


x/(log(x)^3+2*x)

Limit of the function x/(log(x)^3+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      x      \
 lim |-------------|
x->oo|   3         |
     \log (x) + 2*x/
$$\lim_{x \to \infty}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right)$$
Limit(x/(log(x)^3 + 2*x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} x = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(2 x + \log{\left(x \right)}^{3}\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \left(2 x + \log{\left(x \right)}^{3}\right)}\right)$$
=
$$\lim_{x \to \infty} \frac{1}{2 + \frac{3 \log{\left(x \right)}^{2}}{x}}$$
=
$$\lim_{x \to \infty} \frac{1}{2 + \frac{3 \log{\left(x \right)}^{2}}{x}}$$
=
$$\frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1/2
$$\frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = \frac{1}{2}$$
$$\lim_{x \to 0^-}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{2 x + \log{\left(x \right)}^{3}}\right) = \frac{1}{2}$$
More at x→-oo
The graph
Limit of the function x/(log(x)^3+2*x)