Mister Exam

Limit of the function x/8

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x\
 lim |-|
x->0+\8/
$$\lim_{x \to 0^+}\left(\frac{x}{8}\right)$$
Limit(x/8, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /x\
 lim |-|
x->0+\8/
$$\lim_{x \to 0^+}\left(\frac{x}{8}\right)$$
0
$$0$$
= 1.06954907217024e-33
     /x\
 lim |-|
x->0-\8/
$$\lim_{x \to 0^-}\left(\frac{x}{8}\right)$$
0
$$0$$
= -1.06954907217024e-33
= -1.06954907217024e-33
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x}{8}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{8}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{x}{8}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x}{8}\right) = \frac{1}{8}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{8}\right) = \frac{1}{8}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{8}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.06954907217024e-33
1.06954907217024e-33
The graph
Limit of the function x/8