Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2/(3+x^3-4*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((1+x)^3-(-1+x)^3)/(1+x^2)
Limit of ((1+x)^3+(2+x)^3)/((4+x)^3+(5+x)^3)
Identical expressions
two ^n* two ^(- one -n)
2 to the power of n multiply by 2 to the power of ( minus 1 minus n)
two to the power of n multiply by two to the power of ( minus one minus n)
2n*2(-1-n)
2n*2-1-n
2^n2^(-1-n)
2n2(-1-n)
2n2-1-n
2^n2^-1-n
Similar expressions
2^n*2^(1-n)
2^n*2^(-1+n)
Limit of the function
/
2^n*2^(-1-n)
Limit of the function 2^n*2^(-1-n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ n -1 - n\ lim \2 *2 / n->oo
lim
n
→
∞
(
2
n
2
−
n
−
1
)
\lim_{n \to \infty}\left(2^{n} 2^{- n - 1}\right)
n
→
∞
lim
(
2
n
2
−
n
−
1
)
Limit(2^n*2^(-1 - n), n, oo, dir='-')
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Rapid solution
[src]
1/2
1
2
\frac{1}{2}
2
1
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to \infty}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
∞
lim
(
2
n
2
−
n
−
1
)
=
2
1
lim
n
→
0
−
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to 0^-}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
0
−
lim
(
2
n
2
−
n
−
1
)
=
2
1
More at n→0 from the left
lim
n
→
0
+
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to 0^+}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
0
+
lim
(
2
n
2
−
n
−
1
)
=
2
1
More at n→0 from the right
lim
n
→
1
−
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to 1^-}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
1
−
lim
(
2
n
2
−
n
−
1
)
=
2
1
More at n→1 from the left
lim
n
→
1
+
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to 1^+}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
1
+
lim
(
2
n
2
−
n
−
1
)
=
2
1
More at n→1 from the right
lim
n
→
−
∞
(
2
n
2
−
n
−
1
)
=
1
2
\lim_{n \to -\infty}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
n
→
−
∞
lim
(
2
n
2
−
n
−
1
)
=
2
1
More at n→-oo
The graph