Mister Exam

Other calculators:


2^n*2^(-1-n)

Limit of the function 2^n*2^(-1-n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / n  -1 - n\
 lim \2 *2      /
n->oo            
limn(2n2n1)\lim_{n \to \infty}\left(2^{n} 2^{- n - 1}\right)
Limit(2^n*2^(-1 - n), n, oo, dir='-')
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Rapid solution [src]
1/2
12\frac{1}{2}
Other limits n→0, -oo, +oo, 1
limn(2n2n1)=12\lim_{n \to \infty}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
limn0(2n2n1)=12\lim_{n \to 0^-}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
More at n→0 from the left
limn0+(2n2n1)=12\lim_{n \to 0^+}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
More at n→0 from the right
limn1(2n2n1)=12\lim_{n \to 1^-}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
More at n→1 from the left
limn1+(2n2n1)=12\lim_{n \to 1^+}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
More at n→1 from the right
limn(2n2n1)=12\lim_{n \to -\infty}\left(2^{n} 2^{- n - 1}\right) = \frac{1}{2}
More at n→-oo
The graph
Limit of the function 2^n*2^(-1-n)