Mister Exam

Other calculators:


((2+x)/(-2+x))^x

Limit of the function ((2+x)/(-2+x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             x
     /2 + x \ 
 lim |------| 
x->oo\-2 + x/ 
$$\lim_{x \to \infty} \left(\frac{x + 2}{x - 2}\right)^{x}$$
Limit(((2 + x)/(-2 + x))^x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(\frac{x + 2}{x - 2}\right)^{x}$$
transform
$$\lim_{x \to \infty} \left(\frac{x + 2}{x - 2}\right)^{x}$$
=
$$\lim_{x \to \infty} \left(\frac{\left(x - 2\right) + 4}{x - 2}\right)^{x}$$
=
$$\lim_{x \to \infty} \left(\frac{x - 2}{x - 2} + \frac{4}{x - 2}\right)^{x}$$
=
$$\lim_{x \to \infty} \left(1 + \frac{4}{x - 2}\right)^{x}$$
=
do replacement
$$u = \frac{x - 2}{4}$$
then
$$\lim_{x \to \infty} \left(1 + \frac{4}{x - 2}\right)^{x}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{4 u + 2}$$
=
$$\lim_{u \to \infty}\left(\left(1 + \frac{1}{u}\right)^{2} \left(1 + \frac{1}{u}\right)^{4 u}\right)$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2} \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{4 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{4 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{4}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{4} = e^{4}$$

The final answer:
$$\lim_{x \to \infty} \left(\frac{x + 2}{x - 2}\right)^{x} = e^{4}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 4
e 
$$e^{4}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{x + 2}{x - 2}\right)^{x} = e^{4}$$
$$\lim_{x \to 0^-} \left(\frac{x + 2}{x - 2}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{x + 2}{x - 2}\right)^{x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{x + 2}{x - 2}\right)^{x} = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{x + 2}{x - 2}\right)^{x} = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{x + 2}{x - 2}\right)^{x} = e^{4}$$
More at x→-oo
The graph
Limit of the function ((2+x)/(-2+x))^x