Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 2^(-n)*2^(1+n)
Limit of tan(k*x)/x
Limit of (-x+tan(x))/(x+2*sin(x))
Limit of asin(5*x)/tan(3*x)
Graphing y =
:
2+x
Derivative of
:
2+x
Integral of d{x}
:
2+x
Identical expressions
two +x
2 plus x
two plus x
Similar expressions
2-x
Limit of the function
/
2+x
Limit of the function 2+x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (2 + x) x->oo
$$\lim_{x \to \infty}\left(x + 2\right)$$
Limit(2 + x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x + 2\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(x + 2\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{2}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{2 u + 1}{u}\right)$$
=
$$\frac{0 \cdot 2 + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x + 2\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x + 2\right) = \infty$$
$$\lim_{x \to 0^-}\left(x + 2\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + 2\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + 2\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + 2\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + 2\right) = -\infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph