Mister Exam

Other calculators:


2*x^2+3*x

Limit of the function 2*x^2+3*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2      \
 lim \2*x  + 3*x/
x->1+            
$$\lim_{x \to 1^+}\left(2 x^{2} + 3 x\right)$$
Limit(2*x^2 + 3*x, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
5
$$5$$
One‐sided limits [src]
     /   2      \
 lim \2*x  + 3*x/
x->1+            
$$\lim_{x \to 1^+}\left(2 x^{2} + 3 x\right)$$
5
$$5$$
= 5.0
     /   2      \
 lim \2*x  + 3*x/
x->1-            
$$\lim_{x \to 1^-}\left(2 x^{2} + 3 x\right)$$
5
$$5$$
= 5.0
= 5.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(2 x^{2} + 3 x\right) = 5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 x^{2} + 3 x\right) = 5$$
$$\lim_{x \to \infty}\left(2 x^{2} + 3 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 x^{2} + 3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 x^{2} + 3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(2 x^{2} + 3 x\right) = \infty$$
More at x→-oo
Numerical answer [src]
5.0
5.0
The graph
Limit of the function 2*x^2+3*x