Mister Exam

Other calculators:


2*x/(-1+x)

You entered:

2*x/(-1+x)

What you mean?

Limit of the function 2*x/(-1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2*x  \
 lim |------|
x->1+\-1 + x/
$$\lim_{x \to 1^+}\left(\frac{2 x}{x - 1}\right)$$
Limit(2*x/(-1 + x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     / 2*x  \
 lim |------|
x->1+\-1 + x/
$$\lim_{x \to 1^+}\left(\frac{2 x}{x - 1}\right)$$
oo
$$\infty$$
= 304.0
     / 2*x  \
 lim |------|
x->1-\-1 + x/
$$\lim_{x \to 1^-}\left(\frac{2 x}{x - 1}\right)$$
-oo
$$-\infty$$
= -300.0
= -300.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{2 x}{x - 1}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 x}{x - 1}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{2 x}{x - 1}\right) = 2$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{2 x}{x - 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 x}{x - 1}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{2 x}{x - 1}\right) = 2$$
More at x→-oo
Numerical answer [src]
304.0
304.0
The graph
Limit of the function 2*x/(-1+x)