Mister Exam

Other calculators:


2*tan(x)

Limit of the function 2*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (2*tan(x))
   pi           
x->--+          
   4            
$$\lim_{x \to \frac{\pi}{4}^+}\left(2 \tan{\left(x \right)}\right)$$
Limit(2*tan(x), x, pi/4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
2
$$2$$
One‐sided limits [src]
 lim  (2*tan(x))
   pi           
x->--+          
   4            
$$\lim_{x \to \frac{\pi}{4}^+}\left(2 \tan{\left(x \right)}\right)$$
2
$$2$$
= 2.0
 lim  (2*tan(x))
   pi           
x->---          
   4            
$$\lim_{x \to \frac{\pi}{4}^-}\left(2 \tan{\left(x \right)}\right)$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{4}^-}\left(2 \tan{\left(x \right)}\right) = 2$$
More at x→pi/4 from the left
$$\lim_{x \to \frac{\pi}{4}^+}\left(2 \tan{\left(x \right)}\right) = 2$$
$$\lim_{x \to \infty}\left(2 \tan{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 \tan{\left(x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 \tan{\left(x \right)}\right) = 2 \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 \tan{\left(x \right)}\right) = 2 \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 \tan{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function 2*tan(x)