Mister Exam

Other calculators:


2*(1-x)*log(x)

Limit of the function 2*(1-x)*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (2*(1 - x)*log(x))
x->1+                  
$$\lim_{x \to 1^+}\left(2 \left(1 - x\right) \log{\left(x \right)}\right)$$
Limit((2*(1 - x))*log(x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (2*(1 - x)*log(x))
x->1+                  
$$\lim_{x \to 1^+}\left(2 \left(1 - x\right) \log{\left(x \right)}\right)$$
0
$$0$$
= 2.2377871124045e-29
 lim (2*(1 - x)*log(x))
x->1-                  
$$\lim_{x \to 1^-}\left(2 \left(1 - x\right) \log{\left(x \right)}\right)$$
0
$$0$$
= 5.17935226703274e-32
= 5.17935226703274e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(2 \left(1 - x\right) \log{\left(x \right)}\right) = \infty$$
More at x→-oo
Numerical answer [src]
2.2377871124045e-29
2.2377871124045e-29
The graph
Limit of the function 2*(1-x)*log(x)