$$\lim_{x \to \infty}\left(e^{x} \left(1 - x\right)\right) = -\infty$$ $$\lim_{x \to 0^-}\left(e^{x} \left(1 - x\right)\right) = 1$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(e^{x} \left(1 - x\right)\right) = 1$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(e^{x} \left(1 - x\right)\right) = 0$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(e^{x} \left(1 - x\right)\right) = 0$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(e^{x} \left(1 - x\right)\right) = 0$$ More at x→-oo