Mister Exam

Other calculators:


2*cos(x)

Limit of the function 2*cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (2*cos(x))
x->0+          
limx0+(2cos(x))\lim_{x \to 0^+}\left(2 \cos{\left(x \right)}\right)
Limit(2*cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
2
22
Other limits x→0, -oo, +oo, 1
limx0(2cos(x))=2\lim_{x \to 0^-}\left(2 \cos{\left(x \right)}\right) = 2
More at x→0 from the left
limx0+(2cos(x))=2\lim_{x \to 0^+}\left(2 \cos{\left(x \right)}\right) = 2
limx(2cos(x))=2,2\lim_{x \to \infty}\left(2 \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle
More at x→oo
limx1(2cos(x))=2cos(1)\lim_{x \to 1^-}\left(2 \cos{\left(x \right)}\right) = 2 \cos{\left(1 \right)}
More at x→1 from the left
limx1+(2cos(x))=2cos(1)\lim_{x \to 1^+}\left(2 \cos{\left(x \right)}\right) = 2 \cos{\left(1 \right)}
More at x→1 from the right
limx(2cos(x))=2,2\lim_{x \to -\infty}\left(2 \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle
More at x→-oo
One‐sided limits [src]
 lim (2*cos(x))
x->0+          
limx0+(2cos(x))\lim_{x \to 0^+}\left(2 \cos{\left(x \right)}\right)
2
22
= 2.0
 lim (2*cos(x))
x->0-          
limx0(2cos(x))\lim_{x \to 0^-}\left(2 \cos{\left(x \right)}\right)
2
22
= 2.0
= 2.0
Numerical answer [src]
2.0
2.0
The graph
Limit of the function 2*cos(x)