Mister Exam

Other calculators:


2/x

Limit of the function 2/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /2\
 lim  |-|
x->-oo\x/
$$\lim_{x \to -\infty}\left(\frac{2}{x}\right)$$
Limit(2/x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(\frac{2}{x}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to -\infty}\left(\frac{2}{x}\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{2 \frac{1}{x}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{2 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(2 u\right)$$
=
$$0 \cdot 2 = 0$$

The final answer:
$$\lim_{x \to -\infty}\left(\frac{2}{x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{2}{x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{2}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{2}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2}{x}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2}{x}\right) = 2$$
More at x→1 from the right
The graph
Limit of the function 2/x