Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(1+x)/3
Limit of (-16+2^x)/(-1+5*sqrt(x)*(5-x))
Limit of (-4+x^2)/(x^3+2*x)
Limit of (-4+x^2)/(-3+sqrt(1-4*x))
Graphing y =
:
12-x
Identical expressions
twelve -x
12 minus x
twelve minus x
Similar expressions
12^(-x)*(3^x+4^x)
12+x
Limit of the function
/
12-x
Limit of the function 12-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (12 - x) x->2+
$$\lim_{x \to 2^+}\left(12 - x\right)$$
Limit(12 - x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(12 - x\right) = 10$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(12 - x\right) = 10$$
$$\lim_{x \to \infty}\left(12 - x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(12 - x\right) = 12$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(12 - x\right) = 12$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(12 - x\right) = 11$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(12 - x\right) = 11$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(12 - x\right) = \infty$$
More at x→-oo
Rapid solution
[src]
10
$$10$$
Expand and simplify
One‐sided limits
[src]
lim (12 - x) x->2+
$$\lim_{x \to 2^+}\left(12 - x\right)$$
10
$$10$$
= 10.0
lim (12 - x) x->2-
$$\lim_{x \to 2^-}\left(12 - x\right)$$
10
$$10$$
= 10.0
= 10.0
Numerical answer
[src]
10.0
10.0
The graph