Mister Exam

Limit of the function 12-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (12 - x)
x->2+        
limx2+(12x)\lim_{x \to 2^+}\left(12 - x\right)
Limit(12 - x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0020
Other limits x→0, -oo, +oo, 1
limx2(12x)=10\lim_{x \to 2^-}\left(12 - x\right) = 10
More at x→2 from the left
limx2+(12x)=10\lim_{x \to 2^+}\left(12 - x\right) = 10
limx(12x)=\lim_{x \to \infty}\left(12 - x\right) = -\infty
More at x→oo
limx0(12x)=12\lim_{x \to 0^-}\left(12 - x\right) = 12
More at x→0 from the left
limx0+(12x)=12\lim_{x \to 0^+}\left(12 - x\right) = 12
More at x→0 from the right
limx1(12x)=11\lim_{x \to 1^-}\left(12 - x\right) = 11
More at x→1 from the left
limx1+(12x)=11\lim_{x \to 1^+}\left(12 - x\right) = 11
More at x→1 from the right
limx(12x)=\lim_{x \to -\infty}\left(12 - x\right) = \infty
More at x→-oo
Rapid solution [src]
10
1010
One‐sided limits [src]
 lim (12 - x)
x->2+        
limx2+(12x)\lim_{x \to 2^+}\left(12 - x\right)
10
1010
= 10.0
 lim (12 - x)
x->2-        
limx2(12x)\lim_{x \to 2^-}\left(12 - x\right)
10
1010
= 10.0
= 10.0
Numerical answer [src]
10.0
10.0
The graph
Limit of the function 12-x