Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2/(3+x^3-4*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((1+x)^3-(-1+x)^3)/(1+x^2)
Limit of ((1+x)^3+(2+x)^3)/((4+x)^3+(5+x)^3)
Graphing y =
:
12-x
Identical expressions
twelve -x
12 minus x
twelve minus x
Similar expressions
sqrt(x)-1/x^(1/12)-x^(1/5)
12+x
12^(-x)*(3^x+4^x)
Limit of the function
/
12-x
Limit of the function 12-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (12 - x) x->2+
lim
x
→
2
+
(
12
−
x
)
\lim_{x \to 2^+}\left(12 - x\right)
x
→
2
+
lim
(
12
−
x
)
Limit(12 - x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0
-3.0
-2.0
-1.0
4.0
0.0
1.0
2.0
3.0
0
20
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
2
−
(
12
−
x
)
=
10
\lim_{x \to 2^-}\left(12 - x\right) = 10
x
→
2
−
lim
(
12
−
x
)
=
10
More at x→2 from the left
lim
x
→
2
+
(
12
−
x
)
=
10
\lim_{x \to 2^+}\left(12 - x\right) = 10
x
→
2
+
lim
(
12
−
x
)
=
10
lim
x
→
∞
(
12
−
x
)
=
−
∞
\lim_{x \to \infty}\left(12 - x\right) = -\infty
x
→
∞
lim
(
12
−
x
)
=
−
∞
More at x→oo
lim
x
→
0
−
(
12
−
x
)
=
12
\lim_{x \to 0^-}\left(12 - x\right) = 12
x
→
0
−
lim
(
12
−
x
)
=
12
More at x→0 from the left
lim
x
→
0
+
(
12
−
x
)
=
12
\lim_{x \to 0^+}\left(12 - x\right) = 12
x
→
0
+
lim
(
12
−
x
)
=
12
More at x→0 from the right
lim
x
→
1
−
(
12
−
x
)
=
11
\lim_{x \to 1^-}\left(12 - x\right) = 11
x
→
1
−
lim
(
12
−
x
)
=
11
More at x→1 from the left
lim
x
→
1
+
(
12
−
x
)
=
11
\lim_{x \to 1^+}\left(12 - x\right) = 11
x
→
1
+
lim
(
12
−
x
)
=
11
More at x→1 from the right
lim
x
→
−
∞
(
12
−
x
)
=
∞
\lim_{x \to -\infty}\left(12 - x\right) = \infty
x
→
−
∞
lim
(
12
−
x
)
=
∞
More at x→-oo
Rapid solution
[src]
10
10
10
10
Expand and simplify
One‐sided limits
[src]
lim (12 - x) x->2+
lim
x
→
2
+
(
12
−
x
)
\lim_{x \to 2^+}\left(12 - x\right)
x
→
2
+
lim
(
12
−
x
)
10
10
10
10
= 10.0
lim (12 - x) x->2-
lim
x
→
2
−
(
12
−
x
)
\lim_{x \to 2^-}\left(12 - x\right)
x
→
2
−
lim
(
12
−
x
)
10
10
10
10
= 10.0
= 10.0
Numerical answer
[src]
10.0
10.0
The graph