Mister Exam

Other calculators:


3+4*x

Limit of the function 3+4*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (3 + 4*x)
x->oo         
$$\lim_{x \to \infty}\left(4 x + 3\right)$$
Limit(3 + 4*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(4 x + 3\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(4 x + 3\right)$$ =
$$\lim_{x \to \infty}\left(\frac{4 + \frac{3}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{4 + \frac{3}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{3 u + 4}{u}\right)$$
=
$$\frac{0 \cdot 3 + 4}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(4 x + 3\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(4 x + 3\right) = \infty$$
$$\lim_{x \to 0^-}\left(4 x + 3\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 x + 3\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(4 x + 3\right) = 7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 x + 3\right) = 7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(4 x + 3\right) = -\infty$$
More at x→-oo
The graph
Limit of the function 3+4*x