Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((1+x)/(1+2*x))^x
Limit of (n/(1+n))^(5+3*n)
Limit of (9^x-8^x)/asin(3*x)
Limit of (-4+2*x+8*x^2)/(6+4*x)
Derivative of
:
3*x^3
Graphing y =
:
3*x^3
Integral of d{x}
:
3*x^3
Identical expressions
three *x^ three
3 multiply by x cubed
three multiply by x to the power of three
3*x3
3*x³
3*x to the power of 3
3x^3
3x3
Similar expressions
1-7*x+2*x^2+3*x^3+x^4/3
cot(4*x)^3*sin(3*x)^3
asin(2*x)^3/asin(3*x)^3
(-5*x+4*x^3)/(1-3*x^3)
Limit of the function
/
3*x^3
Limit of the function 3*x^3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3\ lim \3*x / x->oo
$$\lim_{x \to \infty}\left(3 x^{3}\right)$$
Limit(3*x^3, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(3 x^{3}\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to \infty}\left(3 x^{3}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{3} \frac{1}{x^{3}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{3} \frac{1}{x^{3}}} = \lim_{u \to 0^+}\left(\frac{3}{u^{3}}\right)$$
=
$$\frac{3}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(3 x^{3}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(3 x^{3}\right) = \infty$$
$$\lim_{x \to 0^-}\left(3 x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 x^{3}\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 x^{3}\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 x^{3}\right) = -\infty$$
More at x→-oo
The graph