Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-cos(a*x))/(1-cos(b*x))
Limit of cot(x)*log(x+e^x)
Limit of (x^2-x)/(-1+x^2)
Limit of 6/x
Derivative of
:
3*x^4
Graphing y =
:
3*x^4
Identical expressions
three *x^ four
3 multiply by x to the power of 4
three multiply by x to the power of four
3*x4
3*x⁴
3x^4
3x4
Similar expressions
(1+3*x^4)/(5-4*x^2)
(1+x^2+x^4)/(x^2-x+3*x^4)
(2+x+x^3)/(3+3*x^4+6*x)
1-11*x+43*x^4/8
(1+3*x)^(4/x)
Limit of the function
/
3*x^4
Limit of the function 3*x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 4\ lim \3*x / x->oo
$$\lim_{x \to \infty}\left(3 x^{4}\right)$$
Limit(3*x^4, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(3 x^{4}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(3 x^{4}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{3} \frac{1}{x^{4}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{3} \frac{1}{x^{4}}} = \lim_{u \to 0^+}\left(\frac{3}{u^{4}}\right)$$
=
$$\frac{3}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(3 x^{4}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(3 x^{4}\right) = \infty$$
$$\lim_{x \to 0^-}\left(3 x^{4}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 x^{4}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 x^{4}\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 x^{4}\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 x^{4}\right) = \infty$$
More at x→-oo
The graph