Mister Exam

Limit of the function 3*x/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /3*x\
 lim |---|
x->1+\ 2 /
$$\lim_{x \to 1^+}\left(\frac{3 x}{2}\right)$$
Limit((3*x)/2, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
3/2
$$\frac{3}{2}$$
One‐sided limits [src]
     /3*x\
 lim |---|
x->1+\ 2 /
$$\lim_{x \to 1^+}\left(\frac{3 x}{2}\right)$$
3/2
$$\frac{3}{2}$$
= 1.5
     /3*x\
 lim |---|
x->1-\ 2 /
$$\lim_{x \to 1^-}\left(\frac{3 x}{2}\right)$$
3/2
$$\frac{3}{2}$$
= 1.5
= 1.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{3 x}{2}\right) = \frac{3}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{3 x}{2}\right) = \frac{3}{2}$$
$$\lim_{x \to \infty}\left(\frac{3 x}{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{3 x}{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{3 x}{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{3 x}{2}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
1.5
1.5
The graph
Limit of the function 3*x/2