Mister Exam

Other calculators:


3-x

Limit of the function 3-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (3 - x)
x->3+       
limx3+(3x)\lim_{x \to 3^+}\left(3 - x\right)
Limit(3 - x, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6012345-6-5-4-3-2-1-1010
One‐sided limits [src]
 lim (3 - x)
x->3+       
limx3+(3x)\lim_{x \to 3^+}\left(3 - x\right)
0
00
= -8.5563925773619e-33
 lim (3 - x)
x->3-       
limx3(3x)\lim_{x \to 3^-}\left(3 - x\right)
0
00
= 8.5563925773619e-33
= 8.5563925773619e-33
Other limits x→0, -oo, +oo, 1
limx3(3x)=0\lim_{x \to 3^-}\left(3 - x\right) = 0
More at x→3 from the left
limx3+(3x)=0\lim_{x \to 3^+}\left(3 - x\right) = 0
limx(3x)=\lim_{x \to \infty}\left(3 - x\right) = -\infty
More at x→oo
limx0(3x)=3\lim_{x \to 0^-}\left(3 - x\right) = 3
More at x→0 from the left
limx0+(3x)=3\lim_{x \to 0^+}\left(3 - x\right) = 3
More at x→0 from the right
limx1(3x)=2\lim_{x \to 1^-}\left(3 - x\right) = 2
More at x→1 from the left
limx1+(3x)=2\lim_{x \to 1^+}\left(3 - x\right) = 2
More at x→1 from the right
limx(3x)=\lim_{x \to -\infty}\left(3 - x\right) = \infty
More at x→-oo
Rapid solution [src]
0
00
Numerical answer [src]
-8.5563925773619e-33
-8.5563925773619e-33
The graph
Limit of the function 3-x