Mister Exam

Other calculators:


3-3*x^2

Limit of the function 3-3*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2\
 lim \3 - 3*x /
x->1+          
$$\lim_{x \to 1^+}\left(3 - 3 x^{2}\right)$$
Limit(3 - 3*x^2, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /       2\
 lim \3 - 3*x /
x->1+          
$$\lim_{x \to 1^+}\left(3 - 3 x^{2}\right)$$
0
$$0$$
= 2.39153384521091e-31
     /       2\
 lim \3 - 3*x /
x->1-          
$$\lim_{x \to 1^-}\left(3 - 3 x^{2}\right)$$
0
$$0$$
= 3.41830095449434e-31
= 3.41830095449434e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(3 - 3 x^{2}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 - 3 x^{2}\right) = 0$$
$$\lim_{x \to \infty}\left(3 - 3 x^{2}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(3 - 3 x^{2}\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 - 3 x^{2}\right) = 3$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(3 - 3 x^{2}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
2.39153384521091e-31
2.39153384521091e-31
The graph
Limit of the function 3-3*x^2