Mister Exam

Other calculators:


3-3*x^2

Limit of the function 3-3*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2\
 lim \3 - 3*x /
x->1+          
limx1+(33x2)\lim_{x \to 1^+}\left(3 - 3 x^{2}\right)
Limit(3 - 3*x^2, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.5-1010
Rapid solution [src]
0
00
One‐sided limits [src]
     /       2\
 lim \3 - 3*x /
x->1+          
limx1+(33x2)\lim_{x \to 1^+}\left(3 - 3 x^{2}\right)
0
00
= 2.39153384521091e-31
     /       2\
 lim \3 - 3*x /
x->1-          
limx1(33x2)\lim_{x \to 1^-}\left(3 - 3 x^{2}\right)
0
00
= 3.41830095449434e-31
= 3.41830095449434e-31
Other limits x→0, -oo, +oo, 1
limx1(33x2)=0\lim_{x \to 1^-}\left(3 - 3 x^{2}\right) = 0
More at x→1 from the left
limx1+(33x2)=0\lim_{x \to 1^+}\left(3 - 3 x^{2}\right) = 0
limx(33x2)=\lim_{x \to \infty}\left(3 - 3 x^{2}\right) = -\infty
More at x→oo
limx0(33x2)=3\lim_{x \to 0^-}\left(3 - 3 x^{2}\right) = 3
More at x→0 from the left
limx0+(33x2)=3\lim_{x \to 0^+}\left(3 - 3 x^{2}\right) = 3
More at x→0 from the right
limx(33x2)=\lim_{x \to -\infty}\left(3 - 3 x^{2}\right) = -\infty
More at x→-oo
Numerical answer [src]
2.39153384521091e-31
2.39153384521091e-31
The graph
Limit of the function 3-3*x^2