Mister Exam

Other calculators:


(3/2)^x

Limit of the function (3/2)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        x
 lim 3/2 
x->oo    
$$\lim_{x \to \infty} \left(\frac{3}{2}\right)^{x}$$
Limit((3/2)^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{3}{2}\right)^{x} = \infty$$
$$\lim_{x \to 0^-} \left(\frac{3}{2}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{3}{2}\right)^{x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{3}{2}\right)^{x} = \frac{3}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{3}{2}\right)^{x} = \frac{3}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{3}{2}\right)^{x} = 0$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function (3/2)^x