Mister Exam

Other calculators:


3/10

Limit of the function 3/10

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (3/10)
x->0+      
$$\lim_{x \to 0^+} \frac{3}{10}$$
Limit(3/10, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
3/10
$$\frac{3}{10}$$
One‐sided limits [src]
 lim (3/10)
x->0+      
$$\lim_{x \to 0^+} \frac{3}{10}$$
3/10
$$\frac{3}{10}$$
= 0.3
 lim (3/10)
x->0-      
$$\lim_{x \to 0^-} \frac{3}{10}$$
3/10
$$\frac{3}{10}$$
= 0.3
= 0.3
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{3}{10} = \frac{3}{10}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{3}{10} = \frac{3}{10}$$
$$\lim_{x \to \infty} \frac{3}{10} = \frac{3}{10}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{3}{10} = \frac{3}{10}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{3}{10} = \frac{3}{10}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{3}{10} = \frac{3}{10}$$
More at x→-oo
Numerical answer [src]
0.3
0.3
The graph
Limit of the function 3/10