Mister Exam

Other calculators:


x*tan(5*x)/2

Limit of the function x*tan(5*x)/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x*tan(5*x)\
 lim |----------|
x->0+\    2     /
$$\lim_{x \to 0^+}\left(\frac{x \tan{\left(5 x \right)}}{2}\right)$$
Limit((x*tan(5*x))/2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x \tan{\left(5 x \right)}}{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x \tan{\left(5 x \right)}}{2}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{x \tan{\left(5 x \right)}}{2}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x \tan{\left(5 x \right)}}{2}\right) = \frac{\tan{\left(5 \right)}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x \tan{\left(5 x \right)}}{2}\right) = \frac{\tan{\left(5 \right)}}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x \tan{\left(5 x \right)}}{2}\right)$$
More at x→-oo
One‐sided limits [src]
     /x*tan(5*x)\
 lim |----------|
x->0+\    2     /
$$\lim_{x \to 0^+}\left(\frac{x \tan{\left(5 x \right)}}{2}\right)$$
0
$$0$$
= -6.55612102311664e-31
     /x*tan(5*x)\
 lim |----------|
x->0-\    2     /
$$\lim_{x \to 0^-}\left(\frac{x \tan{\left(5 x \right)}}{2}\right)$$
0
$$0$$
= -6.55612102311664e-31
= -6.55612102311664e-31
Rapid solution [src]
0
$$0$$
Numerical answer [src]
-6.55612102311664e-31
-6.55612102311664e-31
The graph
Limit of the function x*tan(5*x)/2