Mister Exam

Other calculators:


10*x^2

Limit of the function 10*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    2\
 lim \10*x /
x->oo       
limx(10x2)\lim_{x \to \infty}\left(10 x^{2}\right)
Limit(10*x^2, x, oo, dir='-')
Detail solution
Let's take the limit
limx(10x2)\lim_{x \to \infty}\left(10 x^{2}\right)
Let's divide numerator and denominator by x^2:
limx(10x2)\lim_{x \to \infty}\left(10 x^{2}\right) =
limx11101x2\lim_{x \to \infty} \frac{1}{\frac{1}{10} \frac{1}{x^{2}}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx11101x2=limu0+(10u2)\lim_{x \to \infty} \frac{1}{\frac{1}{10} \frac{1}{x^{2}}} = \lim_{u \to 0^+}\left(\frac{10}{u^{2}}\right)
=
100=\frac{10}{0} = \infty

The final answer:
limx(10x2)=\lim_{x \to \infty}\left(10 x^{2}\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(10x2)=\lim_{x \to \infty}\left(10 x^{2}\right) = \infty
limx0(10x2)=0\lim_{x \to 0^-}\left(10 x^{2}\right) = 0
More at x→0 from the left
limx0+(10x2)=0\lim_{x \to 0^+}\left(10 x^{2}\right) = 0
More at x→0 from the right
limx1(10x2)=10\lim_{x \to 1^-}\left(10 x^{2}\right) = 10
More at x→1 from the left
limx1+(10x2)=10\lim_{x \to 1^+}\left(10 x^{2}\right) = 10
More at x→1 from the right
limx(10x2)=\lim_{x \to -\infty}\left(10 x^{2}\right) = \infty
More at x→-oo
The graph
Limit of the function 10*x^2