Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 1-cos(3*x)
Limit of ((6+5*x)/(-1+5*x))^((1+2*x^2)/x)
Limit of (-3*5^(1+x)+5*2^x)/(2*5^x+100*2^x)
Limit of (4^x-9^x)/(4^(1+x)+9^(1+x))
Graphing y =
:
10*x^2
Derivative of
:
10*x^2
Identical expressions
ten *x^ two
10 multiply by x squared
ten multiply by x to the power of two
10*x2
10*x²
10*x to the power of 2
10x^2
10x2
Similar expressions
(-6-x+10*x^2)/(-x^3+3*x)
(1+10*x)^(2+1/x)
Limit of the function
/
10*x^2
Limit of the function 10*x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \10*x / x->oo
$$\lim_{x \to \infty}\left(10 x^{2}\right)$$
Limit(10*x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(10 x^{2}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(10 x^{2}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{10} \frac{1}{x^{2}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{10} \frac{1}{x^{2}}} = \lim_{u \to 0^+}\left(\frac{10}{u^{2}}\right)$$
=
$$\frac{10}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(10 x^{2}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(10 x^{2}\right) = \infty$$
$$\lim_{x \to 0^-}\left(10 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(10 x^{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(10 x^{2}\right) = 10$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(10 x^{2}\right) = 10$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(10 x^{2}\right) = \infty$$
More at x→-oo
The graph