Mister Exam

Other calculators:


tan(x)^asin(x)

Limit of the function tan(x)^asin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        asin(x)   
 lim tan       (x)
x->0+             
$$\lim_{x \to 0^+} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)}$$
Limit(tan(x)^asin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)} = 1$$
$$\lim_{x \to \infty} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)} = \tan^{\frac{\pi}{2}}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)} = \tan^{\frac{\pi}{2}}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)}$$
More at x→-oo
One‐sided limits [src]
        asin(x)   
 lim tan       (x)
x->0+             
$$\lim_{x \to 0^+} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= 0.998120706743336
        asin(x)   
 lim tan       (x)
x->0-             
$$\lim_{x \to 0^-} \tan^{\operatorname{asin}{\left(x \right)}}{\left(x \right)}$$
1
$$1$$
= (1.00191690138811 - 0.000840101661505512j)
= (1.00191690138811 - 0.000840101661505512j)
Numerical answer [src]
0.998120706743336
0.998120706743336
The graph
Limit of the function tan(x)^asin(x)