Mister Exam

Other calculators:


tan(x/2)

Limit of the function tan(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /x\
 lim  tan|-|
   pi    \2/
x->--+      
   2        
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(\frac{x}{2} \right)}$$
Limit(tan(x/2), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
         /x\
 lim  tan|-|
   pi    \2/
x->--+      
   2        
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(\frac{x}{2} \right)}$$
1
$$1$$
= 1.0
         /x\
 lim  tan|-|
   pi    \2/
x->---      
   2        
$$\lim_{x \to \frac{\pi}{2}^-} \tan{\left(\frac{x}{2} \right)}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-} \tan{\left(\frac{x}{2} \right)} = 1$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(\frac{x}{2} \right)} = 1$$
$$\lim_{x \to \infty} \tan{\left(\frac{x}{2} \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \tan{\left(\frac{x}{2} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan{\left(\frac{x}{2} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \tan{\left(\frac{x}{2} \right)} = \tan{\left(\frac{1}{2} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan{\left(\frac{x}{2} \right)} = \tan{\left(\frac{1}{2} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan{\left(\frac{x}{2} \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function tan(x/2)