Mister Exam

Other calculators:


tan(3*x)^2

Limit of the function tan(3*x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2     
 lim tan (3*x)
x->0+         
$$\lim_{x \to 0^+} \tan^{2}{\left(3 x \right)}$$
Limit(tan(3*x)^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \tan^{2}{\left(3 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan^{2}{\left(3 x \right)} = 0$$
$$\lim_{x \to \infty} \tan^{2}{\left(3 x \right)} = \left\langle 0, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \tan^{2}{\left(3 x \right)} = \tan^{2}{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan^{2}{\left(3 x \right)} = \tan^{2}{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan^{2}{\left(3 x \right)} = \left\langle 0, \infty\right\rangle$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
        2     
 lim tan (3*x)
x->0+         
$$\lim_{x \to 0^+} \tan^{2}{\left(3 x \right)}$$
0
$$0$$
= -1.52383419835679e-32
        2     
 lim tan (3*x)
x->0-         
$$\lim_{x \to 0^-} \tan^{2}{\left(3 x \right)}$$
0
$$0$$
= -1.52383419835679e-32
= -1.52383419835679e-32
Numerical answer [src]
-1.52383419835679e-32
-1.52383419835679e-32
The graph
Limit of the function tan(3*x)^2