Mister Exam

Other calculators:


t^2

Limit of the function t^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      2
 lim t 
t->0+  
$$\lim_{t \to 0^+} t^{2}$$
Limit(t^2, t, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
      2
 lim t 
t->0+  
$$\lim_{t \to 0^+} t^{2}$$
0
$$0$$
= -9.68305799950874e-32
      2
 lim t 
t->0-  
$$\lim_{t \to 0^-} t^{2}$$
0
$$0$$
= -9.68305799950874e-32
= -9.68305799950874e-32
Other limits t→0, -oo, +oo, 1
$$\lim_{t \to 0^-} t^{2} = 0$$
More at t→0 from the left
$$\lim_{t \to 0^+} t^{2} = 0$$
$$\lim_{t \to \infty} t^{2} = \infty$$
More at t→oo
$$\lim_{t \to 1^-} t^{2} = 1$$
More at t→1 from the left
$$\lim_{t \to 1^+} t^{2} = 1$$
More at t→1 from the right
$$\lim_{t \to -\infty} t^{2} = \infty$$
More at t→-oo
Numerical answer [src]
-9.68305799950874e-32
-9.68305799950874e-32
The graph
Limit of the function t^2