Mister Exam

Other calculators:


sqrt(3)/3

Limit of the function sqrt(3)/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  ___\
     |\/ 3 |
 lim |-----|
x->oo\  3  /
$$\lim_{x \to \infty}\left(\frac{\sqrt{3}}{3}\right)$$
Limit(sqrt(3)/3, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
  ___
\/ 3 
-----
  3  
$$\frac{\sqrt{3}}{3}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
$$\lim_{x \to 0^-}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{3}}{3}\right) = \frac{\sqrt{3}}{3}$$
More at x→-oo
The graph
Limit of the function sqrt(3)/3