Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (4+x^2)/(-6+2*x)
Limit of ((1+x)/(1+2*x))^x
Limit of (n/(1+n))^(5+3*n)
Limit of (9^x-8^x)/asin(3*x)
Integral of d{x}
:
sqrt(1+x^2)
Derivative of
:
sqrt(1+x^2)
Graphing y =
:
sqrt(1+x^2)
Identical expressions
sqrt(one +x^ two)
square root of (1 plus x squared )
square root of (one plus x to the power of two)
√(1+x^2)
sqrt(1+x2)
sqrt1+x2
sqrt(1+x²)
sqrt(1+x to the power of 2)
sqrt1+x^2
Similar expressions
pi^2*sqrt(1+x^2)
(-cos(x)+cos(7*x))/(-1+sqrt(1+x^2))
(1+4*x)/sqrt(1+x^2)
sqrt(1-x^2)
sqrt(1+x^2+4*x)-x
(1-sqrt(1+x^2))/x^2
Limit of the function
/
sqrt(1+x^2)
Limit of the function sqrt(1+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ / 2 lim \/ 1 + x x->oo
$$\lim_{x \to \infty} \sqrt{x^{2} + 1}$$
Limit(sqrt(1 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{x^{2} + 1} = \infty$$
$$\lim_{x \to 0^-} \sqrt{x^{2} + 1} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{x^{2} + 1} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{x^{2} + 1} = \sqrt{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{x^{2} + 1} = \sqrt{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{x^{2} + 1} = \infty$$
More at x→-oo
The graph