Mister Exam

Other calculators:


sqrt(n+n^2)-sqrt(-1+n^2)

Limit of the function sqrt(n+n^2)-sqrt(-1+n^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   ________      _________\
     |  /      2      /       2 |
 lim \\/  n + n   - \/  -1 + n  /
n->oo                            
$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right)$$
Limit(sqrt(n + n^2) - sqrt(-1 + n^2), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right)$$
Let's eliminate indeterminateness oo - oo
Multiply and divide by
$$\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}$$
then
$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) \left(\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right)}{\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{- \left(\sqrt{n^{2} - 1}\right)^{2} + \left(\sqrt{n^{2} + n}\right)^{2}}{\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\left(1 - n^{2}\right) + \left(n^{2} + n\right)}{\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{n + 1}{\sqrt{n^{2} - 1} + \sqrt{n^{2} + n}}\right)$$

Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(\frac{1 + \frac{1}{n}}{\frac{\sqrt{n^{2} - 1}}{n} + \frac{\sqrt{n^{2} + n}}{n}}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{1 + \frac{1}{n}}{\sqrt{\frac{n^{2} - 1}{n^{2}}} + \sqrt{\frac{n^{2} + n}{n^{2}}}}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{1 + \frac{1}{n}}{\sqrt{1 - \frac{1}{n^{2}}} + \sqrt{1 + \frac{1}{n}}}\right)$$
Do replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{1 + \frac{1}{n}}{\sqrt{1 - \frac{1}{n^{2}}} + \sqrt{1 + \frac{1}{n}}}\right)$$ =
$$\lim_{u \to 0^+}\left(\frac{u + 1}{\sqrt{1 - u^{2}} + \sqrt{u + 1}}\right)$$ =
= $$\frac{1}{\sqrt{1} + \sqrt{1 - 0^{2}}} = \frac{1}{2}$$

The final answer:
$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \frac{1}{2}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1/2
$$\frac{1}{2}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \frac{1}{2}$$
$$\lim_{n \to 0^-}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - i$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - i$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \sqrt{2}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \sqrt{2}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - \frac{1}{2}$$
More at n→-oo
The graph
Limit of the function sqrt(n+n^2)-sqrt(-1+n^2)