$$\lim_{n \to \infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \frac{1}{2}$$
$$\lim_{n \to 0^-}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - i$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - i$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \sqrt{2}$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = \sqrt{2}$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(- \sqrt{n^{2} - 1} + \sqrt{n^{2} + n}\right) = - \frac{1}{2}$$
More at n→-oo