Mister Exam

Other calculators:


sqrt(-4+6*x)/(-2+sqrt(x))

Limit of the function sqrt(-4+6*x)/(-2+sqrt(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  __________\
     |\/ -4 + 6*x |
 lim |------------|
x->4+|        ___ |
     \ -2 + \/ x  /
$$\lim_{x \to 4^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right)$$
Limit(sqrt(-4 + 6*x)/(-2 + sqrt(x)), x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \infty$$
More at x→4 from the left
$$\lim_{x \to 4^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \sqrt{6}$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - i$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - i$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - \sqrt{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - \sqrt{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \sqrt{6}$$
More at x→-oo
Numerical answer [src]
2704.97074818792
2704.97074818792
The graph
Limit of the function sqrt(-4+6*x)/(-2+sqrt(x))