$$\lim_{x \to 4^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \infty$$
More at x→4 from the left$$\lim_{x \to 4^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \sqrt{6}$$
More at x→oo$$\lim_{x \to 0^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - i$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - i$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - \sqrt{2}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = - \sqrt{2}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\sqrt{6 x - 4}}{\sqrt{x} - 2}\right) = \sqrt{6}$$
More at x→-oo