Mister Exam

Other calculators:


-2+x^2/3

Limit of the function -2+x^2/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2\
     |     x |
 lim |-2 + --|
x->oo\     3 /
$$\lim_{x \to \infty}\left(\frac{x^{2}}{3} - 2\right)$$
Limit(-2 + x^2/3, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x^{2}}{3} - 2\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{x^{2}}{3} - 2\right)$$ =
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} - \frac{2}{x^{2}}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} - \frac{2}{x^{2}}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{\frac{1}{3} - 2 u^{2}}{u^{2}}\right)$$
=
$$\frac{\frac{1}{3} - 2 \cdot 0^{2}}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x^{2}}{3} - 2\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x^{2}}{3} - 2\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{3} - 2\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{3} - 2\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{3} - 2\right) = - \frac{5}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{3} - 2\right) = - \frac{5}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{3} - 2\right) = \infty$$
More at x→-oo
The graph
Limit of the function -2+x^2/3