Mister Exam

Other calculators:


sqrt(4-x^2)/x

Limit of the function sqrt(4-x^2)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   ________\
     |  /      2 |
     |\/  4 - x  |
 lim |-----------|
x->0+\     x     /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{4 - x^{2}}}{x}\right)$$
Limit(sqrt(4 - x^2)/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /   ________\
     |  /      2 |
     |\/  4 - x  |
 lim |-----------|
x->0+\     x     /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{4 - x^{2}}}{x}\right)$$
oo
$$\infty$$
= 301.998344366323
     /   ________\
     |  /      2 |
     |\/  4 - x  |
 lim |-----------|
x->0-\     x     /
$$\lim_{x \to 0^-}\left(\frac{\sqrt{4 - x^{2}}}{x}\right)$$
-oo
$$-\infty$$
= -301.998344366323
= -301.998344366323
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = i$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = \sqrt{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = \sqrt{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{4 - x^{2}}}{x}\right) = - i$$
More at x→-oo
Numerical answer [src]
301.998344366323
301.998344366323
The graph
Limit of the function sqrt(4-x^2)/x