Mister Exam

Other calculators:


sqrt(4-x^2)

Limit of the function sqrt(4-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
       /      2 
 lim \/  4 - x  
x->oo           
$$\lim_{x \to \infty} \sqrt{4 - x^{2}}$$
Limit(sqrt(4 - x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo*I
$$\infty i$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{4 - x^{2}} = \infty i$$
$$\lim_{x \to 0^-} \sqrt{4 - x^{2}} = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{4 - x^{2}} = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{4 - x^{2}} = \sqrt{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{4 - x^{2}} = \sqrt{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{4 - x^{2}} = \infty i$$
More at x→-oo
The graph
Limit of the function sqrt(4-x^2)