Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((4+3*x)/(-2+3*x))^(-7+5*x)
Limit of (5-4*x+3*x^2)/(1-x+2*x^2)
Limit of ((3+2*x)/(7+5*x))^(1+x)
Limit of (1-log(7*x))^(7*x)
Derivative of
:
sqrt(4-x^2)
Integral of d{x}
:
sqrt(4-x^2)
Graphing y =
:
sqrt(4-x^2)
Identical expressions
sqrt(four -x^ two)
square root of (4 minus x squared )
square root of (four minus x to the power of two)
√(4-x^2)
sqrt(4-x2)
sqrt4-x2
sqrt(4-x²)
sqrt(4-x to the power of 2)
sqrt4-x^2
Similar expressions
sqrt(4+x^2)
Limit of the function
/
sqrt(4-x^2)
Limit of the function sqrt(4-x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ / 2 lim \/ 4 - x x->oo
lim
x
→
∞
4
−
x
2
\lim_{x \to \infty} \sqrt{4 - x^{2}}
x
→
∞
lim
4
−
x
2
Limit(sqrt(4 - x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
4
Plot the graph
Rapid solution
[src]
oo*I
∞
i
\infty i
∞
i
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
4
−
x
2
=
∞
i
\lim_{x \to \infty} \sqrt{4 - x^{2}} = \infty i
x
→
∞
lim
4
−
x
2
=
∞
i
lim
x
→
0
−
4
−
x
2
=
2
\lim_{x \to 0^-} \sqrt{4 - x^{2}} = 2
x
→
0
−
lim
4
−
x
2
=
2
More at x→0 from the left
lim
x
→
0
+
4
−
x
2
=
2
\lim_{x \to 0^+} \sqrt{4 - x^{2}} = 2
x
→
0
+
lim
4
−
x
2
=
2
More at x→0 from the right
lim
x
→
1
−
4
−
x
2
=
3
\lim_{x \to 1^-} \sqrt{4 - x^{2}} = \sqrt{3}
x
→
1
−
lim
4
−
x
2
=
3
More at x→1 from the left
lim
x
→
1
+
4
−
x
2
=
3
\lim_{x \to 1^+} \sqrt{4 - x^{2}} = \sqrt{3}
x
→
1
+
lim
4
−
x
2
=
3
More at x→1 from the right
lim
x
→
−
∞
4
−
x
2
=
∞
i
\lim_{x \to -\infty} \sqrt{4 - x^{2}} = \infty i
x
→
−
∞
lim
4
−
x
2
=
∞
i
More at x→-oo
The graph