Mister Exam

Other calculators:


sqrt(4-x)

Limit of the function sqrt(4-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       _______
 lim \/ 4 - x 
x->4+         
$$\lim_{x \to 4^+} \sqrt{4 - x}$$
Limit(sqrt(4 - x), x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
       _______
 lim \/ 4 - x 
x->4+         
$$\lim_{x \to 4^+} \sqrt{4 - x}$$
0
$$0$$
= (0.0 + 0.0140226207686625j)
       _______
 lim \/ 4 - x 
x->4-         
$$\lim_{x \to 4^-} \sqrt{4 - x}$$
0
$$0$$
= 0.0141383686500258
= 0.0141383686500258
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-} \sqrt{4 - x} = 0$$
More at x→4 from the left
$$\lim_{x \to 4^+} \sqrt{4 - x} = 0$$
$$\lim_{x \to \infty} \sqrt{4 - x} = \infty i$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{4 - x} = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{4 - x} = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{4 - x} = \sqrt{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{4 - x} = \sqrt{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{4 - x} = \infty$$
More at x→-oo
Numerical answer [src]
(0.0 + 0.0140226207686625j)
(0.0 + 0.0140226207686625j)
The graph
Limit of the function sqrt(4-x)