Mister Exam

Other calculators:


3*sin(x)^2/(4*x)

Limit of the function 3*sin(x)^2/(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /     2   \
      |3*sin (x)|
 lim  |---------|
   pi \   4*x   /
x->--+           
   2             
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right)$$
Limit(3*sin(x)^2/((4*x)), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      /     2   \
      |3*sin (x)|
 lim  |---------|
   pi \   4*x   /
x->--+           
   2             
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right)$$
 3  
----
2*pi
$$\frac{3}{2 \pi}$$
= 0.477464829275686
      /     2   \
      |3*sin (x)|
 lim  |---------|
   pi \   4*x   /
x->---           
   2             
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right)$$
 3  
----
2*pi
$$\frac{3}{2 \pi}$$
= 0.477464829275686
= 0.477464829275686
Rapid solution [src]
 3  
----
2*pi
$$\frac{3}{2 \pi}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3}{2 \pi}$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3}{2 \pi}$$
$$\lim_{x \to \infty}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3 \sin^{2}{\left(1 \right)}}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3 \sin^{2}{\left(1 \right)}}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→-oo
Numerical answer [src]
0.477464829275686
0.477464829275686
The graph
Limit of the function 3*sin(x)^2/(4*x)