$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3}{2 \pi}$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3}{2 \pi}$$
$$\lim_{x \to \infty}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→oo$$\lim_{x \to 0^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3 \sin^{2}{\left(1 \right)}}{4}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = \frac{3 \sin^{2}{\left(1 \right)}}{4}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{3 \sin^{2}{\left(x \right)}}{4 x}\right) = 0$$
More at x→-oo